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SUMMARY 

This paper presents a control-volume-based finite difference method in non-orthogonal curvilinear co- 
ordinates on a local basis in which the vectors and tensors are all based on the general curvilinear co- 
ordinates for buoyant flow calculations in arbitrary three-dimensional geometries. The governing equations 
are transformed from Cartesian co-ordinates into generalized curvilinear co-ordinates. After integrating the 
set of equations for the control volumes, the finite difference equations are then formulated by a proper 
treatment of the heat flux and stress tensors and by incorporating the QUICK scheme for the convective 
terms. The solution procedure then follows the one for three-dimensional Cartesian co-ordinates. 

Examples are given in problems of natural convection in such three-dimensional enclosures as paral- 
lelepiped enclosures and horizontal closed cylinders with differentially heated ends. In the latter case, 
important applications have been found in crystal growth by means of chemical vapour deposition in a 
cylindrical ampoule, in which uniform heat fluxes along the two ends are required in order to  produce high- 
quality crystals. Special attention is given to the insertion of baffles in the cylinder to improve the 
recirculating flow patterns near the two ends. 

KEY WORDS Finite difference Natural convection Enclosure flow Non-orthogonal co-ordinates 

1. INTRODUCTION 

Computation of heat transfer and fluid flow in complex geometries has always been a challenge to 
numerical analysts. Among the many approaches proposed, the body-fitted co-ordinate techni- 
que seems to have attracted much attention. The advantages of this technique are that the 
computational domain can be divided into curvilinear and non-orthogonal meshes so that they 
coincide with the physical boundary, and the governing equations are transformed into simpler 
forms. There is, however, a resulting complexity in that the vectors and tensors in rectangular co- 
ordinates must be transformed to those in body-fitted coordinates accordingly. Thus in the 
calculation procedure the dependent variables remain in Cartesian co-ordinates while the 
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conservation governing equations are expressed in terms of curvilinear control volumes. The 
transformation is needed in all control volume calculations. The purpose of this paper is to 
present an alternative approach in which the dependent variables and conservation equations are 
all expressed in curvilinear coordinates, sometimes known as a local basis approach in that the 
vectors and tensors are all based on general curvilinear co-ordinates. The advantage of this 
technique is that the unknowns and the conserved quantities are already in curvilinear co- 
ordinates so that no transformation is required during the calculations, a fact which makes the 
calculations more efficient. In both methods, however, the transformation of the governing 
equations is needed, but the final forms are different. In the body-fitted co-ordinate approach the 
momentum equations are ail taken to be scalar so that the mass, energy and momentum 
equations are all in scalar form. For the present method, which is on the local basis, the variation 
of the co-ordinate lines of the base vector with position has to be taken into account. This 
variation results in additional terms with the Christoffel symbol in the momentum equations, a 
fact which seems to give rise to difficulties in the numerical discretization and solution. As will be 
shown, however, once proper treatment is taken on the Christoffel symbol a routine procedure 
can be followed, and a modification of the computer code in Cartesian co-ordinates can be made 
so that the code can be just as readily applied to curvilinear co-ordinates. 

The present local basis co-ordinate system can be equally applied to cylindrical and spherical- 
polar co-ordinates. In fact, Raithby et al.’ have proposed a methodology in two-dimensional 
orthogonal co-ordinates which is on the local basis. As far as non-orthogonal co-ordinates are 
concerned, Faghri et al.’ have developed a solution methodology for convection4iffusion 
problems in which one boundary of the solution domain does not lie along the rectangular co- 
ordinate lines. In their derivation one of the two co-ordinate lines is transformed to a curvilinear 
non-orthogonal co-ordinate line while the other is kept along the rectangular line. The trans- 
formation procedure is rather elaborate and the extension to two co-ordinate lines will be 
expected to be even more complicated. Chen and Somerville3 applied a co-ordinate transforma- 
tion to the calculation of the flow above an irregular lower boundary where two of the co- 
ordinates (el, 6’) are along the usual Cartesian co-ordinates (XI, x2)  but the third (03) is a function 
of (x’, x’). Yang et aL4 transformed the conservation equations into those in curvilinear co- 
ordinates and then, by using special properties of the geometry, obtained a set of reasonably 
simple equations for the problem of parallelpiped geometry. The focus of this paper is on the 
general approach without any simplification due to the geometry. The governing equations are 
transformed into those in non-orthogonal co-ordinates by a tensor transformation which retains 
the relatively simple forms. With a proper treatment of the heat flux and shear stress terms the 
discretization can be made directly on a physical basis, so that the physical interpretation of the 
terms can be readily made. 

2. MATHEMATICAL FORMULATIONS 

2.1. Conservation equations in generalized curvilinear co-ordinates 

follows: 
The conservative equations of mass, momentum and energy in Cartesian co-ordinates read as 
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All the symbols are defined in the Appendix. Here the shear stress tensor oij is given by 

(4) 

( 5 )  

oij = p ( u .  . + u .  . - - 

@ = 2(u: j )6 i j  + [ui,j(l - S i j ) ] 2  - +(Ui,')2 

I , J  1 . 1  : 6 i j u k , k ) *  

the dissipation function by 

and the mean specific heat by 

To transform the above set of equations into those in generalized curvilinear co-ordinates 
(01, 02, 03) ,  two rules in accordance with Eringen5 are followed: (a) the partial differentiation 
symbol (,) is replaced by the covariant differentiation symbol (;I; (b) the repeat indices are on the 
diagonal positions. Meanwhile, the physical components u(') and d k j )  are introduced according to 
the relations 

ui = &)/hi, U' = gij U"'/hj, 0; = gik  dk"/(hk/hj) .  (7) 

Here g i j  is the covariant metric tensor while g'j in the following is the contravariant metrix 
tensor; hi is the scale factor for curvilinear co-ordinates in directions B'. It is not a component, 
therefore the summation rule does not apply to the index of hi. 

For simplification the parentheses are dropped from now on and all the components are meant 
to be the physical ones. Equations (1H5) can now be recast into 

pr + (pu'/hi);i = 0, 

(Pgikuk/hk)t  + CPgikukuJ/(hkhj)];j = - p ; i  + p g i j G J / h j  + [ g i k o k ' / ( h k h j ) l ; j ,  

(pc,,T), + (pc,,u'/hiT);i = (kT;jgj i ) ; i  + p a )  - p(u'/hi);'. 

(8) 

(9) 

(10) 

The shear stresses now become 

akj = / h k h j [ ( d / h j ) ; , g m k  + ( U k / h k ) ; , g m j  - $6kj(um/hm);m] 

@ = 2[ (u ' /h i ) ; j ]2B;  + [ ( U i / h J j ( 1  - Sj)] '  - $[ (u ' /h i ) ; i ]2 .  

(1 1) 

and the dissipation function becomes 

(12)  

In the above equations the covariant differentiation is the partial derivative of a scalar (say p) ,  
a vector (say u')  or a tensor (say oij) with respect to the curvilinear system 8'. For a scalar 

P;i = P.ii 
for a vector 

and for a tensor 

where g is the determinant of the covariant metric tensor, 
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{ j i }  is known as the Christoffel symbol of the second kind and is given by 

The following properties of g have been utilized above: 

and the metric tensors satisfy 

gikgkJ = hi,  (19) 

( g i k ) ; j  = O. (20) 
Equation (19) has been used to find the contravariant metric tensor. By realizing the tensorial 
property of the term uiuj, a momentum flux is defined as follows: 

Mij = puiuj  - g i j .  (21) 

(22) 

(23) 

With (14), (15 ) ,  (20) and (21), equations (8H10) can now be written as 

pt + g -  l/2(g112pU’/hi),i = 0, 

(pu‘lh,), + g-1 ’2 [g1’2Mi j / (h ih j ) ] , j  + { .’ } M j m / ( h j h m )  = - p , k g k i  + pGi/hi, 
Jm 

( pcprnT)* + 9 -  112(g1/2pui/hiCprnr), i  = g - ’ / ’ ( g l / ’  kT,jgJi), i  + p@ - pg-1’2(g1/2ui ) , i .  (24) 

Some manipulations are required so that the momentum equation can have a form similar 
to (24). First, recalling the definition of Mi’ along with oij in (1 1) and that of { ii} in (17), it is found 
that j and m are exchangeable, so that 

Secondly, hi is removed from the denominator. Equation (23) now becomes 

(pi) ,  + g -  1 / 2 [ g 1 ’ 2 M i J / ( h j ) ] , j  = -p,jgjihi + pG‘ + (h i ) , jMi j / (h ihj )  

- ( g i k / 2 )  C 2 ( g j k ) , m  - (gjm),klM’mhi/(hjhm). (26) 

2.2. Control volume finite diflerence equations 

To solve the above sets of equations by the control volume finite difference method, a grid is 
first generated to cover the whole domain of interest. Figure 1 shows a typical two-dimensional 
curvilinear control volume system which is bounded by the physical boundary and is non- 
orthogonal. A staggered grid system has been adopted, i.e. the scalar variables ( p ,  p, T, etc.) are 
located at the centre of the base control volume, while the velocity components u l ,  u2 and u3 are 
located at the surfaces of the base control volume which are shifted half a cell towards the west, 
north and out of the paper respectively. In the control volume method the equations are 
discretized by integrating the conservation equations over the curvilinear control volume, which 
is bounded by lines of constant d l ,  O2 and d3. In non-orthogonal co-ordinates the differential area 
is given by the cross-product of two vectors which bound it, i.e. 
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Figure 1 .  Control volumes and nodal points 

and the differential volume is given by 

where eijk is the permutation symbol: 

1 if i, j ,  k are cyclic, 

0 if i, j ,  k are acyclic. 
e . .  = - 1 if i, j ,  k are anticyclic, Ilk { 

With the above relations, the conservation equation of mass after integrating over the control 
volume around P can be written as 

(p),Av + G t A ,  - G,!,A, + G;A, - G$A, + G:Af - G:Ab = 0. (29) 

G' = pi, (30) 

Here G' is the mass flow rate in the direction 8', i.e. 

and the area A and the volume are all in the physical space: 

= gl"/hl Ae2A03 I,, w ,  A,, 

An,s = g1'2/h2A03A011n,s, (31) 
Af,b = gl/' /h3 Ae'A8' I f ,  ,,. 

Integration of the energy equation results in 

(pC,,T),AU 4- Ji A ,  - J h A ,  + J:An - JfA,  + J:Af - J:Ab = S T .  

J '  = Gicpm T - (kT,jg"hi), 

ST = ( p a  + pg-1/2(g1'2u'),i)Av. 

(32) 

(33) 

(34) 

Here J' is the total heat flux including conduction and convection along the direction e', i.e. 

and ST is the heat source term including viscous dissipation as well as pressure work: 

For the momentum equation we then have 

( p d ) , A o  + Mi' A ,  - MZ A, + M;'A, - M:'A, + Mi3Ar - kfL3Ab = (-P,jg"hi + pGi)Av + S', 
(35) 
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where S' includes the force due to curvilinear non-orthogonality of the co-ordinates: 

s' = [(hi),jM"/(hihj)] AU - AU[g ik /2  ( 2 ( g j k ) , m  - (gjm),k)M'"hi/(hjhm)]. (36) 

The next step is to approximate all the flux terms (J ' ,  M i j )  and source terms ( S T ,  9). Owing to 
the non-orthogonality, the simple Fourier form of conducting heat flux, for example, is in a 
derivative form involving multidirections, as are the stress terms (equation (1 1)). A stress-flux 
formulation due to Raithby et al.' in two-dimensional orthogonal co-ordinates is incorporated 
here so that 

J '  = GicpmT - kT,igi ihi  + (kT , ig i ih i  - k , jg iJ 'h i )  == j i  + (kT,igiihi - kT,jgi'hi), (37) 

(38) 

(39) 

- .. . .. 
= ~ j u i  - p u f j g j j h j  + ( p u f j g j j h j  - 0") = M ~ J  + (putjg-"hj - @ i j ) ,  

and for the pressure gradient 

-p , jg ' jh i  = -p,igi'hi + (p , ig"hi  - p , jg 'Jh i ) .  

S T  = ( ~ @ ) A u  + p p ( u ; A e  - u ~ A ,  + u ~ A ,  -- u$A, + $Af - $Ab). 

By using the average pressure, the source term of (34) can be written as 

(40) 

Similarly, again using the average values, we can write (36) as 

Now the energy and momentum equations become 

(pc,, T) ,  AU + .?: A, - &Aw + j: A ,  - j$ A, + .$Af - j; A ,  = ST, (42) 

(43) 
(PU'),A,V + *a1 A ,  - Gz A,,, + *i2An - Mf2 A, + - kb Ab = ( -P,igiihi + PC')AU + 9, 

where 

S' = S' - ( k T , , g " h ,  - k T , j g " h l ) A ( ;  - (kT, ,g22h2 - kT,jg2'h2)A(," 

si = si - ( p t i l g l l h l  - ci1)~l; - (pu;Zg22h2 - o i2 )~ l :  - (puf ,g33h3 - a i 3 ) ~ ~ :  

- ( k T , 3 ~ ~ ~ ~ h ,  - k7',g3'h3)A)', ,  (44) 

+ (p,i - p , j  g"hi) Au. (45) 

-. 

Care is to be taken in treating the flux terms. For example, in the heat flux terms J '  the term 
cpmT is to be evaluated at the surfaces of the control volumes. To accomplish this, a QUICK 
scheme6 is incorporated here: - 

J ; = ( G 1 c p m T ) w  -(kT,lg"h,)w 

= G&(c,,wTw + cpmpTp)  - (1/8)CURVN +(1/24)CURVTl 
+ (1/24)CURVT2 - ( k g " h l ) , / A O 1 ( T p  -- TW). (46) 

Here CURVN is the stabilizing curvature term in the normal direction (8'-direction) and 
CURVTl and CURVT2 are the stabilizing curvature terms in the transverse directions (P- and 
03-directions).6 To satisfy the mass conservation equation, the pressure correction equation due 
to Patankar' can be applied. It is to be noted that the corrected velocity u1 is related to the 
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approximated velocity u1 * as 

u1 = ul*  + (A/agl l~ lh l )w(P,  - Pw), (47) 
which shows that the coefficients in the pressure correction equation are to be multiplied by g"h,h, 
compared to those for Cartesian co-ordinates. 

The final general finite difference equation for the temperature variable can now be written as 

apTp = awTw + aETE + asTs + UNTN + aBTB + aFTF 4- S. (48) 

Besides the source term S T ,  S here also includes terms for all the neighbouring points of P (such as 
A,, TNw,  A,, Tsw, etc.). This practice will not result in any major increase in the number of 
coefficient updates since the equations are still in the iterative form. In fact, the properties such as 
a'', conductive flux kT,'gij and terms due to the QUICK scheme ( A N w  TNW, A,,  Tsw, etc.) are 
evaluated from the last iteration. To obtain accurate non-linear solutions to within specified 
tolerances, several iterations are usually required. 

3. RESULTS AND DISCUSSION 

As demonstrated above, the solution procedure for a set of equations in non-orthogonal co- 
ordinates is very similar to the one in Cartesian co-ordinates. Proper modification can be made: 
(1) by introducing a stress tensor subroutine and a heat flux subroutine; (2) by adding source 
terms; and (3) by multiplying the coefficients in the pressure correction equation by giihihi. The 
key to discretization and transformation is the metric tensors 9'' and gij. These can be found 
algebraically or numerically. Since 

and 
(49) 

(50) 

it is important to have the basic vector gi in non-orthogonal co-ordinates first. This can be defined 
as 

a . ax' 
ael J a01 J' gi = - (xJe .) = -e . 

so that 

and 

Once the interrelation between xi and 8' is given, an algebraic expression can be derived 

In the following, two examples are used to demonstrate the application of the present 
directly. Another way to find the metric tensors is by numerical grid generation.' 

methodology. 

3.1.  Buoyant f low in complex parallelepiped enclosures 

The enclosure itself is shown in Figure 2. It is formed by skewing a rectangular enclosure along 
the z-axis by an angle y and along the x-axis by an angle rl/. The length L, width Wand height H 
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I Q  

Figure 2. Parallelepiped enclosure geometry 

are all perpendicular distances between the surfaces as shown in Figure 2. Through the geomet- 
rical relation we have 

g" = I/cos2y, 

922 = l/cos2 y cos2 *, 
g33 = (1 - sin2 y cos' Ic/)/(cos2 y cos2 t j ) ,  

g1 = g2 = -sin y/(cos2 y cos' I)).~ 
g13 = g 31 - - sin y sin rl//(cos2 y cos q), 
gZ3 = g32 = -sin +/(cos2 y cos2 $1. 

(54) 

Since the g'j are independent of O', the terms in (36) vanish, while all the other expressions 
remain. The calculation can be carried out for various combinations of angles y and $. 

The boundary conditions are also shown in Figure 2. Two parallel differentially heated walls 
incline from the vertical position at an angle y, which is fixed at 30" in the present case. The top 
and bottom surfaces are horizontal and adiabatic, while the front and back walls incline at an 
angle II/, which is varied from 0" to 45" to determine the three-dimensional effects. When II/ is 0" 
the motion is two-dimensional, except near the lateral wall regions owing to the viscous drag, as 
seen in Figure 3. As $ increases, the flow in the Ol-8' plane becomes rather weak as can be seen by 
the value of the maximum streamfunction, and three-dimensionality becomes increasingly more 
significant as seen from the flow pattern in the 02-03 plane. This three-dimensional motion is 
partially due to the insulated boundary at the inclined lateral walls, near which non-parallel and 
non-horizontal isotherms appear. At $ = 45" the motion in the 01-02 plane is so slow that a dual 
cell appears. 

The validation of the code with the above geometry with y = 0 can be found in Reference 4 and 
hence will not be repeated here. The comparison of the numerical results with experimental data 
is considered to be very good. 

3.2. Buoyant $ow in a horizontal cylinder with internal bafles 

The second example illustrated here is the natural convection inside a horizontal cylinder with 
differentially heated ends. One of the important applications of this problem is crystal growth in a 
closed ampoule. In general, it is required to have both high and uniform heat transfer rates at the 
end walls. However, these two requirements are contrary to each other in that a high heat transfer 
rate generated by natural convection is non-uniform in nature, while a uniform heat transfer rate 
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Figure 3. Temperature and velocity fields at Ra= los, Pr=0.71 with various inclination angles 

I- L 

L - = 2  
R 

Figure 4. Horizontal cylinder with internal baffles 

can be obtained only with pure conduction, which represents the lowest heat transfer rate. The 
compromise is to have a relatively high heat transfer rate with appropriate uniformity. This goal 
can be reached by proper control of natural convection. Many approaches have been proposed, 
e.g. inclining the cylinder with respect to g r a ~ i t y , ~  using both vertical and horizontal temperature 
gradientsg and rotating the cylinder along the horizontal axis,” but the attention here is focused 
on the improvement of the uniformity of the heat flux at the two ends by inserting transverse 
azimuthal conducting baffles as shown in Figure 4. A set of orthogonal co-ordinates can be 
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applied to this geometry with the properties 

These equations make the treatment of the first derivative terms in the governing equation 
easier. For example, equation (37) now becomes 

J' = GicprnT - kT,jg"hi = GicprnT .- kT, ,  @hi = 5, (57)  

equation (39) becomes 
- 

and equation (41) can also be appropriately simplified as 

S' = 2 (M"/hi)p (hLAj)12,'$, - 2 (M'"/h?)p (hfAm)l>-:;k + 1 (MJJ'/(2h,2))p (h;Ai)l$,"s:k. (59) 

The results for a horizontal cylinder without internal baffle at various Rayleigh numbers have 
been validated and reported in Reference 11. Presently the calculation is carried out for a solid 
baffle with thermal conductivity ratio of solid to fluid (air) of 500. Comparison between the two 
cases is displayed in Figures 5 and 6. 

Shown in Figure 5(a) are the isotherms and flow patterns in the vertical centreplane.' Owing 
to the circulation which is induced by the buoyancy force, the cold (hot) fluid directly impinges on 
the hot (cold) surface at the lower right (upper left) corner region. This leads to a relatively dense 
isotherm distribution corresponding to a high heat transfer rate. As the fluid ascends (descends) 
along the hot (cold) surface it becomes hotter (colder) so that the heat transfer rate decreases. At 

Figure 5. Temperature and velocity fields in the vertical central plane of a cylinder at Ra= lo5, Pr=0.71 with and 
without baffles 
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Figure 6. Nusselt number contour on the hot wall 

the lower left (upper right) corner there results a minimum heat transfer rate. When two baffles are 
inserted into the enclosure as shown in Figure 4 they prevent the direct impingement so that the 
isotherms change their shape and give rise to a lower heat transfer rate as shown in Figure 5(b). 
This effect has also been clearly demonstrated in Figure 6, in which the local heat fluxes are 
represented by the Nusselt number contour on the hot surface. Figure 6(a) represents the case 
without baffles. It is seen that at the bottom part of the hot end surface a relatively high Nusselt 
number appears, and the gradient of the Nusselt number along the vertical direction is also very 
strong. The introduction of a high-conductivity baffle in the transverse flow direction counteracts 
the effect of the direct impingement so that the heat flux is reduced and the distribution becomes 
much more uniform as shown in Figure 6(b). 

4. CONCLUSIONS 

The governing equations in non-orthogonal curvilinear co-ordinates with contravariant velocity 
components as dependent variables in the momentum equations are derived through a tensor 
transformation. The finite difference equations based on control volumes are presented. 

The advantages of using the contravariant component are its direct physical representation 
along the co-ordinate lines and the unnecessariness in the transformation between various 
components (such as transformation between Cartesian, covariant, contravariant projection and 
contravariant components). The trade-off here is a higher complexity in the equations. It is 
demonstrated that once proper treatment is made of the Christoffel symbol, a routine procedure 
can be followed and a straightforward modification of the computer algorithm in Cartesian co- 
ordinates can be made so that it can be just as readily applied to curvilinear co-ordinates. 

Two simple examples have been used to demonstrate the present method. Further com- 
putations with more complicated scale factors and metric tensors will be carried out and reported 
later. 
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APPENDIX: NOMENCLATURE 

area 
coefficient in difference equations 
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CP 

C p m  

ei 
ei jk  

9 

gi . 
g", Sij 
Gi 
hi 
H 
Ji 
k 
L 
Mi' 
N u  
P 
Pr 
r 
R 
Ra 
S 
T 
Ui 

W 
X' 

U 

Z 

Greek symbols 

a 

Y 

AOi 

P 
P 
*ij 

# 
c 

B 

* 
6ij 

el 

Superscripts 

T 
( - )  

1 

isobaric specific heat 
mean specific heat 
basic vector in Cartesian co-ordinates, i =  1, 2, 3 
permutation symbol 
determinant of covariant matrix tensor gij 
basic vector in curvilinear co-ordinates, i =  1, 2, 3 
contravariant, covariant metric tensors 
gravitational acceleration vector, i == 1, 2, 3 
scale factor in @-direction 
height of enclosure 
total heat flux in @-direction 
thermal conductivity 
length of enclosure 
momentum flux in j-direction for velocity component ui 
Nusselt number, hL/k 
static pressure 
Prandtl number 
radius co-ordinate 
radius of cylinder 
Rayleigh number, p R g p (  T, - T')L3/pRaR 
source term 
temperature 
velocity components i=  1, 2, 3 
control volume 
width of enclosure 
Cartesian co-ordinates, i = 1, 2, 3 
axial co-ordinate 

thermal diffusivity 
volume expansion coefficient 
skewed angle along z-axis 
skewed angle along x-axis 
incremental independent variables, i = 1, 2, 3 
Kronecker delta 
dynamic viscosity 
density 
shear stress tensor 
orthogonal co-ordinates, i = 1, 2, 3 
dissipation function 
summation symbol 

average value 
with respect to energy equation 
with respect to momentum equation in @-direction 
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Subscripts 

cold wall 
hot wall 
co-ordinate indices 
time derivative 
surface nodal designation of control volume 
nodal designation of control volume 
reference condition 
spatial derivative 
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